Построим вспомогательный треугольник НВР по трем сторонам равным медианам ma, mb, mc, заданным по условию (см. рис.). Отложим на стороне НВ отрезок, НО = 1/3 НВ. Затем через точку О проведем прямую параллельно ВР. Она пересечет сторону треугольника НР в точке К. От точки К отложим отрезок КС = ОК, а от точки О — отрезок ОМ, тем же раствором циркуля. Соединим точку В с точкой С. Через точки В и М, С и Н проведем прямые до их пересечения в точке А.
Проведем в построенном треугольнике АВС дополнительно две медианы МС и АЕ. Докажем, что МС = РВ, а АЕ = НР. Треугольники НВР и НОК подобны с коэффициентом подобия 3. Аналогично треугольники АОС и НКС — с коэффициентом подобия 2.
Предлагаемый способ отличается содержанием значительно меньшего количества шагов в построении.
Сейчас Гегель считается одним из величайших умов человечества. А что его не понимают - так гениев всегда не понимают. А выходит, при...